Journal of Organometallic Chemistry, 438 (1992) 57–75 Elsevier Sequoia S.A., Lausanne JOM 22796

Trifluormethylsubstituierte Plumbane. Synthese, Eigenschaften und NMR-Spektren der Verbindungen $(CF_3)_n PbR_{4-n}$ (n = 1-3) und $(CF_3)_n PbR_{3-n}X$ (n = 1, 2; R = Me, Et; X = Hal)

R. Eujen und A. Patorra

Fachbereich 9 – Anorganische Chemie, Universität – GH, W-5600 Wuppertal 1 (Deutschland) (Eingegangen den 13. März 1992)

Abstract

Trifluoromethylated derivatives of lead, $(CF_3)_n PbR_{4-n}$ $(n = 1-3; R = CH_3, C_2H_5)$, have been prepared by a stepwise halide/CF₃ exchange from $(CF_3)_n PbR_{3-n}X$ (n = 0-2) and donor-stabilized $(CF_3)_2Cd$. Upon treatment of CF_3PbR_3 and $(CF_3)_2PbR_2$ with halides under mild conditions, selective cleavage of the Pb-C(H) bond and formation of the corresponding alkyl(trifluoromethyl)haloplumbanes were achieved, whereas with $(CF_3)_3PbMe$ only $(CF_3)_2PbMeX$ was obtained. The direct exchange of alkyl and trifluoromethyl groups was observed for the systems $PbR_4/(CF_3)_nE$ (E = Hg, Ge, Sn), $(CF_3)_4Sn$ being the most efficient CF₃ transfer reagent. All compounds were characterized by vibrational, mass and multinuclear NMR spectroscopy. The NMR coupling constants $^nJ(^{207}Pb-E)$ (E = ^{19}F , 1H , ^{13}C), which vary strongly with solvents and substituents, have been determined along with their absolute signs. Linear correlations were found between $^1J(^{207}Pb-CF_3)$ and $^2J(^{207}Pb-F)$ or $^2J(^{207}Pb-F)$ and $^2J(^{119}Sn-F)$ of homologous trifluoromethylated stannanes, respectively.

Zusammenfassung

['] Trifluormethylblei-Verbindungen, (CF₃)_nPbR_{4-n} (n = 1-3; R = CH₃, C₂H₅), wurden durch stufenweisen Austausch von Halogenatomen gegen CF₃-Gruppen ausgehend von den Halogeniden (CF₃)_nPbR_{3-n}X (n = 0-2, R = Methyl, Ethyl) and donorstabilisiertem (CF₃)₂Cd synthetisiert. Während die Halogenierung des CF₃PbR₃ und (CF₃)₂PbR₂ unter milden Bedingungen zur bevorzugten Spaltung der Pb-C(H)-Bindung und Bildung der entsprechenden Alkyl(trifluormethyl)halogenplumbane führt, wird im (CF₃)₃PbMe selektiv eine Pb-CF₃-Bindung gespalten. Der direkte Austausch zwischen Alkyl- und CF₃-Gruppen wurde NMR-spektroskopisch in den Systemen PbR₄ /(CF₃)_nE (E = Hg, Ge, Sn) untersucht, wobei (CF₃)₄Sn das effektivste Übertragungsreagenz ist. Die Verbindungen wurden durch Schwingungs-, Massen- und Kernresonanzspektroskopie charakterisiert. Die Spin-Kopplungskonstanten unter Einbeziehung des ²⁰⁷Pb-Kerns weisen eine starke Abhängigkeit sowohl von den Substituenten als auch vom Lösungsmittel auf. Lineare Korrelationen wurden zwischen den ¹J(²⁰⁷Pb-CF₃)- und ²J(²⁰⁷Pb-F)- bzw. den ²J(²⁰⁷Pb-F)- und ²J(¹¹⁹Sn-F)-Kopplungen gefunden, wobei ein Vorzeichenwechsel für die ¹J(PbC)-Kopplung durch 2D-Korrelation bestätigt werden konnte.

Correspondence to: Professor R. Eujen.

Einleitung

Trifluormethylsubstituierte Plumbane, $(CF_3)_n PbR_{4-n}$, sind bislang nur sehr eingeschränkt zugänglich und daher auch nur unzulänglich charakterisiert. Lediglich CF_3PbMe_3 konnte in präparativem Maßstab durch CF_3 -Gruppenübertragung mittels $(CF_3)_2Hg[1]$ bzw. $(CF_3)_2Cd \cdot D[2]$ synthetisiert werden. Höher trifluormethylsubstituierte Plumbane sowie das $(CF_3)_4Pb$ wurden in jüngster Zeit durch Reaktion von PbMe₄ bzw. PbCl₂ mit CF₃-Radikalen im Milligrammaßstab dargestellt [3,4].

Während $(CF_3)_4$ Sn direkt durch Trifluormethylierung von SnBr₄ zugänglich ist [5], scheidet diese Möglichkeit zur Darstellung des $(CF_3)_4$ Pb infolge der Instabilität der Tetrahalogenplumbane PbX₄ aus. Aufgrund der elektronischen Ähnlichkeit einer CF₃-Gruppe und eines Halogens ist ferner zu erwarten, daß Halogenderivate des Typs $(CF_3)_n$ PbX_{4-n} insbesondere für die schwereren Halogenide gegenüber Abspaltung von CF₃X oder X₂ instabil sind.

Synthesemöglichkeiten, die nicht an eine primäre Erzeugung von CF₃-Radikalen geknüpft sind, beinhalten einen Transfer von CF₃-Gruppen durch (a) den Austausch von Halogenatomen gegen CF₃-Gruppen, ausgehend von Alkylhalogenplumbanen des Typs $R_{4-n}PbX_n$. bzw. (b) in Analogie zu den CH₃/CF₃-Austauschreaktionen bei den Systemen ZnMe₂/(CF₃)₂Hg [6], CdMe₂/(CF₃)₂Hg [7] und CdMe₂/CF₃I [8] den Austausch einer oder mehrerer Alkylgruppen gegen CF₃-Gruppen, ausgehend von Tetraalkylplumbanen. Beide Reaktionstypen erfordern ein abgestuftes Potential an CF₃-Überträgern, das insbesondere mit den per-trifluormethylierten Verbindungen (CF₃)₂Hg [9], donorstabilisiertem (CF₃)₂Cd [5,8], (CF₃)₄Ge [10] sowie (CF₃)₄Sn [5,11] verfügbar ist.

Ergebnisse und Diskussion

Im Gegensatz zu den leichteren Elementen der vierten Hauptgruppe können Alkylhalogenplumbane des Typs $R_{4-n}PbX_n$ mit n > 1 aufgrund ihrer Instabilität nicht als Edukte eingesetzt werden, da sie bereits bei Raumtemperatur irreversiblen Umlagerungen unterliegen, die letztlich zur Bildung von PbX_2 , PbR_4 und RX führen [12]. Infolgedessen scheidet ein direkter Austausch mehrerer Halogene gegen CF₃-Gruppen aus, so daß die Synthese durch stufenweise Trifluormethylierung, gefolgt von einer selektiven Desalkylierung, erfolgen muß:

$$PbR_{4} \xrightarrow{+X_{2}} PbR_{3}X \xrightarrow{(CF_{3})_{2}Cd \cdot D} CF_{3}PbR_{3}$$
(1a)

$$CF_{3}PbR_{3} \xrightarrow{+X_{2}} CF_{3}PbR_{2}X \xrightarrow{(CF_{3})_{2}Cd \cdot D} (CF_{3})_{2}PbR_{2}$$
(1b)

$$(CF_3)_2 PbR_2 \xrightarrow{+X_2} (CF_3)_2 PbRX \xrightarrow{(CF_3)_2 Cd \cdot D} (CF_3)_3 PbR \qquad (1c)$$

 $(\mathbf{R} = \mathbf{CH}_3, \mathbf{C}_2\mathbf{H}_5)$

Grundsätzlich muß davon ausgegangen werden, daß die Spaltung der Pb-C(H)-Bindung in Konkurrenz zur Spaltung der Pb- CF_3 -Bindung erfolgt. Mit größer werdender effektiver Elektronegativität des Bleiatoms, d.h. mit steigendem CF_3 - bzw. Halogengehalt, steigt die Stabilität der Pb-C(H)-Bindung, während

ebenso wie bei den entsprechenden CF_3Ge - oder CF_3Sn -Derivaten die Pb- CF_3 -Funktion destabilisiert wird. Dementsprechend ist zu erwarten, daß sich die Einführung einer weiteren CF_3 -Gruppe in der Reaktionsfolge 1a-c zunehmend schwieriger gestaltet.

Trialkyl(trifluormethyl)plumbane sind in hohen Ausbeuten nach Gl. 1a durch Reaktion von R_3PbX (R = Me, Et; X = Br, OCOCF₃) mit (CF_3)₂Cd \cdot D (D =Diglyme, Diethylenglykoldibutylether) zugänglich, wobei die von Lange *et al.* beschriebene Darstellungsmethode für CF₃PbMe₃ [2] in modifizierter Form auch auf das Ethylderivat übertragen werden konnte. Die bei Raumtemperatur noch flüchtigen Trifluormethylplumbane können im Hochvakuum aus der Reaktionsmischung abkondensiert bzw. destilliert werden. Voraussetzung ist der Einsatz eines hochsiedenden Lösungsmittels sowie die Verwendung eines hochsiedenden Donors D zur Stabilisierung des (CF₃)₂Cd. Als Ligand hat sich in besonderem Maße Diethylenglykoldibutylether (Dgldibu) bewährt, der aufgrund seines Siedepunktes von 254°C quantitativ im Reaktionssumpf verbleibt.

Als Lösungsmittel wurden 1,6-Dibromhexan (Sdp. 243°C) und Sulfolan (Sdp. 287°C) eingesetzt. Während in Sulfolanlösung bereits bei Raumtemperatur die Bildung von CF_3PbR_3 ¹⁹F-NMR-spektroskopisch beobachtet wird, ist im weniger polaren 1,6-Dibromhexan eine Reaktionstemperatur von 70°C erforderlich. Ausgehend von Trifluoracetat wird in 1,6-Dibromhexan in erheblichem Umfang auch die Insertion von Difluorcarben in die Pb–O-Bindung beobachtet:

$$Me_{3}PbOC(O)CF_{3} \xrightarrow{+(CF_{3})_{2}Cd \cdot D} Me_{3}PbCF_{3} + Me_{3}Pb-CF_{2}-OC(O)CF_{3}$$
(2)

Die selektive Abspaltung einer Alkylgruppe ohne Spaltung der Pb-CF₃-Bindung nach

$$CF_3PbR_3 + X_2 \longrightarrow CF_3PbR_2X + RX$$
 (3)

erfordert kontrollierte Bedingungen. Während die Bromierung in CHCl₃-Lösung bei 0°C selektiv erfolgt, muß die entsprechende Iodierung in Reinsubstanz vorgenommen werden, um einen unerwünschten Abbau der CF₃-Gruppe unter Bildung von CF₃I und R₃PbI zu vermeiden. Bei der Umsetzung mit Cl₂ wurde auch bei tiefen Temperaturen ein Produktgemisch aus CF₃PbR₂Cl und R₃PbCl erhalten.

Als Alternative bietet sich die Halogenierung mit Zinn(IV)halogeniden entsprechend Gl. 4 an, da einerseits der Alkyl/Halogen-Austausch bei Zinn-Verbindungen wohl bekannt ist [13], anderseits ein CF_3 /Halogen-Austausch zwischen $Sn(CF_3)_4$ und SnX_4 nicht stattfindet [11].

$$CF_3PbR_3 + SnX_4 \longrightarrow CF_3PbR_2X + R_3SnX$$
 (4)

Während mit SnI₄ lediglich in THF eine Umsetzung NMR-spektroskopisch nachgewiesen werden konnte, wird für X = Cl und Br neben dem gewünschtem Alkyl/Halogen-Austausch auch eine Übertragung der CF₃-Gruppe mit Bildung von CF₃-Zinnderivaten beobachtet. So entstehen bei der Reaktion von CF₃PbMe₃ mit SnCl₄ in CHCl₃-Lösung die Spezies (CF₃)₂SnMe₂, (CF₃)₂SnMeCl und CF₃SnMe₂Cl mit einem relativen Anteil von 5–10%.

Die erneute Umsetzung der Halogenide CF_3PbR_2X mit $(CF_3)_2Cd \cdot D$ nach Gl. 1b führt zu den Dialkylbis(trifluormethyl)plumbanen $(CF_3)_2PbR_2$. Die bei 70°C einsetzende Reaktion wird von Nebenreaktionen begleitet, die auf der relativen Instabilität der eingesetzten Halogenplumbane beruhen. Als flüchtige Produkte können neben dem gewünschten $(CF_3)_2PbR_2$ auch CF_3PbR_3 und RX NMRspektroskopisch nachgewiesen werden. Ihre Enstehung kann durch Austauschreaktionen gemäß Gl. 5 erklärt werden, die selbst in den Festkörpern bereits bei Raumtemperatur ablaufen.

$$4 \operatorname{CF_3PbR_2X} \longrightarrow 2(\operatorname{CF_3})_2 \operatorname{PbR_2} + 2 \operatorname{R_2PbX_2}$$
(5a)

$$2 R_2 PbX_2 \longrightarrow R_3 PbX + PbX_2 + RX$$
(5b)

$$R_{3}PbX + CF_{3}PbR_{2}X \longrightarrow CF_{3}PbR_{3} + R_{2}PbX_{2}$$
(5c)

Während sich eine Auftrennung des im Hochvakuum abdestillierten $CF_3PbR_3/(CF_3)_2PbR_2$ -Flüssigkeitsgemisches auf physikalischem Wege sehr aufwendig gestaltet, gelingt die Trennung chemisch durch Umsetzung mit Br₂. Die Bromierung des höher trifluormethylierten Derivats erfolgt wesentlich langsamer, so daß gemäß Gl. 6 CF_3PbR_3 selektiv in das bei Raumtemperatur feste Halogenplumban überführt werden kann:

$$CF_{3}PbR_{3}/(CF_{3})_{2}PbR_{2} \xrightarrow{+Br_{2}} CF_{3}PbR_{2}Br + (CF_{3})_{2}PbR_{2}$$
(6)

Die geringere Reaktivität von $(CF_3)_2 PbR_2$ gegenüber Halogenen bewirkt im Hinblick auf die Gewinung von $(CF_3)_2 PbRX$ allerdings auch, daß der konkurrierende Abbau der CF_3 -Gruppe nach Gl. 7 an Bedeutung gewinnt und lediglich im Fall der Bromierung durch weitere Absenkung der Reaktionstemperatur auf $-25^{\circ}C$ unterdrückt werden kann.

$$(CF_3)_2 PbR_2 + X_2 \longrightarrow CF_3 PbR_2 X + CF_3 X$$
(7a)

$$(CF_3)_2 PbR_2 + X_2 \longrightarrow (CF_3)_2 PbRX + RX$$
(7b)

Tabelle 1 gibt die für unterschiedliche Reaktionsbedingungen durch ¹H- und ¹⁹F-NMR-Spektroskopie ermittelten Produktverteilungen wieder.

Die Übertragung einer weiteren CF_3 -Gruppe gemäß Gl. 1c erfolgt deutlich langsamer als die Bildung der $(CF_3)_2PbR_2$ - und insbesondere der CF_3PbR_3 -Derivate. Bei der zur Übertragung notwendigen Reaktionstemperatur von 70°C dominiert aufgrund der erhöhten Lewis-Acidität des Bleiatoms die Bildung

		3, 2	<u>-</u>	
Lösungsmittel	T (°C)	Reaktionszeit (h)	(CF ₃) ₂ PbMeBr (%)	CF ₃ PbMe ₂ Br (%)
_	40	20 min	35	65
-	20	1.5	80	20
CHCl ₃ ^a	20	2	10	90
-	0	8	90	10
_	- 25	72	100	-

Produktverteilung der Reaktion von (CF₃)₂PbMe₂ mit Br₂

Tabelle 1

^a Verwendung von CHCl₃ ergibt bei allen Temperaturen eine ungünstigere Produktverteilung als die Bromierung der Reinsubstanz. unerwünschter Nebenprodukte als Folge irreversibler Austauschreaktionen des $(CF_3)_2$ PbRBr (Gl. 8):

 $(CF_3)_2PbRBr \xrightarrow{(CF_3)_2Cd \cdot D} (CF_3)_3PbR, (CF_3)_2PbR_2, PbBr_2, RBr (8)$ Während das eingesetzte Bromplumban vollständig abreagiert, beträgt der Umsatz von $(CF_3)_2Cd \cdot D$ weniger als 20%, d.h. die Trifluormethylierung nach Gl. 1c spielt nur eine untergeordnete Rolle.

Die mit steigender Lewis-Acidität des Bleiatoms sinkende Reaktivität der Pb-C(H)-Bindung bei gleichzeitig erhöhter Reaktivität der Pb-CF₃-Funktion bedingt, daß die Reaktionen des $(CF_3)_3$ PbR durch die Abspaltung der CF₃-Gruppe gekennzeichnet sind. Sowohl die Umsetzungen mit Halogenen X₂ als auch mit gasförmigem HX führen zu den Halogeniden $(CF_3)_2$ PbRX:

$$(CF_3)_3 PbR \xrightarrow{X_2} (CF_3)_2 PbRX$$
(9)

$$(CF_3)_3PbR \xrightarrow{HX} (CF_3)_2PbRX$$
 (10)

Die Abspaltung der Alkylgruppe und Bildung eines Halogentris(trifluormethyl)plumbans (CF₃)₃PbX wurde in keinem Fall beobachtet.

Reaktion von PbR_4 mit $(CF_3)_2Hg$ und $(CF_3)_4M$ (M = Ge, Sn)

Gegenüber dem $(CF_3)_2Cd$, das einen Donor zur Stabilisierung benötigt und keinen direkten Alkyl/CF₃-Austausch eingeht, bieten die Umsetzungen mit $(CF_3)_2Hg$, $(CF_3)_4Ge$ oder $(CF_3)_4Sn$ den Vorteil einer basenfreien Reaktionsführung. Die Fähigkeit dieser Verbindungen zur Übertragung von CF₃-Gruppen auf das Bleiatom nimmt in der Reihenfolge $(CF_3)_2Hg < (CF_3)_4Ge < (CF_3)_4Sn$ zu. Dies bedeutet einerseits unterschiedliche Reaktionstemperaturen, anderseits auch einen unterschiedlichen Grad der erzielbaren Trifluormethylierung. Während $(CF_3)_2Hg$ erst oberhalb von 70°C mit PbMe₄ oder PbEt₄ reagiert, kann die Temperatur beim Einsatz von $(CF_3)_4Ge$ um 20°C gesenkt werden, wobei in der Methylreihe auch zwei CF₃-Gruppen ausgetauscht werden.

$$PbR_4 \xrightarrow{(Cr_3)_2 ng} CF_3 PbR_3$$
(11)

$$(R = Me; T = 70^{\circ}C [1];$$

$$R = Et; T = 110^{\circ}C)$$

$$PbR_{4} \xrightarrow{(CF_{3})_{4}Ge} (CF_{3})_{n}PbR_{4-n}$$

$$(R = Me; T = 50^{\circ}C; n = 1, 2;$$

$$R = Et; T = 90^{\circ}C; n = 1)$$

$$(12)$$

 $(CF_3)_4$ Sn trifluormethyliert dagegen bereits bei Raumtemperatur, wobei durch Temperaturerhöhung die Bildung von $(CF_3)_3$ PbMe bzw. $(CF_3)_2$ PbEt₂ erzwungen werden kann.

$$PbR_{4} \xrightarrow{(CF_{3})_{4}Sn} (CF_{3})_{n}PbR_{4-n}$$

$$(13)$$

$$(R = Me; T = 20^{\circ}C; n = 1, 2;$$

$$R = Et; T = 20^{\circ}C; n = 1;$$

$$R = Me; T = 80^{\circ}C; n = 3;$$

$$R = Et; T = 80^{\circ}C; n = 2)$$

i.	Sdp. (°C)	A	В	$\Delta H_{\rm v}$	ΔS_{v}
CF ₃ PbMe ₃	133 ^b	5002	19.24	41.6	102.5
$(CF_3)_2$ PbMe ₂	140	5641	20.58	46.9	113.6
(CF ₃) ₃ PbMe	119	4878	19.37	40.6	103.6
CF ₃ PbEt ₃	183	6200	20.53	51.5	113.1
$(CF_3)_2 PbEt_2$	170	6413	21.39	53.3	120.3

Physikalische Eigenschaften der Alkyl(trifluormethyl)plumbane ^a

^a in p (mbar) = -A/T + B; ΔH_v (kJ/mol) = $R \cdot A$; ΔS_v (J/mol K) = $\Delta H_v / T_{\text{Sdp}}$. ^b 128°C [1].

Die bei erhöhten Temperaturen durchgeführten Umsetzungen sind durch partielle Zersetzung der Edukte bzw. Produkte gekennzeichnet, wobei sich farblose Feststoffe abscheiden.

Die zunehmende Instabilität der Trifluormethylplumbane in Verbindung mit der steigenden, für den CH_3/CF_3 -Austausch notwendigen Reaktionstemperatur lassen eine Darstellung des $(CF_3)_4$ Pb nach Gl. 14 nicht zu.

$$(CF_3)_3PbMe + (CF_3)_4Sn \xrightarrow{T > 80^\circ C} (CF_3)_4Pb + (CF_3)_3SnMe$$
(14)

Physikalische Eigenschaften

Die Organyl(trifluormethyl)plumbane der Reihe $(CF_3)_n PbR_{4-n}$ (R = Me, Et; n = 1-3) sind farblose, stark lichtbrechende Flüssigkeiten, deren Dampfdruckkurven mit Ausnahme des nicht in reiner Form isolierten $(CF_3)_3$ PbEt im Bereich zwischen 50° und 100°C bestimmt wurden. Die extrapolierten Siedepunkte sowie die Verdampfungsenthalpien (ΔH_v) und -entropien (ΔS_v) sind in Tabelle 2 aufgeführt.

Die halogensubstituierten Organyl(trifluormethyl)plumbane $(CF_3)_n PbR_{3-n} X (X = Cl, Br, I)$ sind farblose Feststoffe, die mit Ausnahme der Chloride im Hochvakuum bei $T = 30-40^{\circ}$ C sublimieren. Ihre Stabilität ist vom Halogenatom und dem Grad der Trifluormethylierung abhängig, wobei die instabilsten Derivate mit n = 2 und X = I in Lösung nur NMR-spektroskopisch nachgewiesen werden konnten. Aufgrund der auch im Festkörper ablaufenden Austauschreaktionen zersetzt sich CF_3PbR_2Br bei Raumtemperatur innerhalb weniger Tage, CF_3PbR_2I innerhalb von 24 h vollständig unter Bildung von $(CF_3)_2PbR_2$, CF_3PbR_3 , RX und PbX₂.

Spektroskopische Eigenschaften

Schwingungsspektren

Die Infrarot- und Raman-Spektren sind durch weitgehend charakteristische Bereiche für das $(CF_3)_n$ Pb- bzw. Pb-Alkyl-Fragment gekennzeichnet und können anhand von Gruppenschwingungen unter Annahme lokaler Symmetrien diskutiert und zugeordnet werden [14]. Die Infrarot- und Ramanspektren der Verbindungen $(CF_3)_n$ PbR_{4-n} sind mit approximativen Zuordnungen in Tabelle 3 aufgelistet.

Tabelle 2

				H- 01-4-4 -4	167-2 18					
CF ₃ PbMe ₃	[14]	CF ₃ PbEt ₃	:	(CF ₃) ₂ PbM	le ₂	(CF ₃) ₂ PbE	it ₂	(CF ₃) ₃ PbMe	0	Zuordnung
IR (gas)	Ra (fl)	IR (fl)	Ra (fl)	IR (gas)	Ra (fl)	IR (fl)	Ra (fl)	IR (gas)	Ra (fl)	
3020w	3025w	2974m	2962vw		3045vw	2962w	2970w		3050vw,b	$\nu_{\rm as}({ m CH}_3)$
2937т	2940m,p	2948m	2940w-m,p	2938w	2946m,p		2950m,p	2945w	2955w,p	v ₁ (CH ₃)
		2932m	2912vw			2936w	2920w			V_0(CH ₂)
		2870m	2880w,p			2878w	2887w,p			v ₅ (CH ₂)
		1462w-m	1463w			1464w	1466w			Sas(CH3)
1402vw	1410ww	1428w	1433w		1420ww	1433vw	1437vw			$\delta_{a_s}(CH_3)/\delta(CH_2)$
		1380w-m	1385w,p			1386w	1390w,p			δ _s (CH ₃)
	1184s,p		1179m,p		1193w-m,p		1183т-s,р	ш190т	1192w,p	$\delta_{s}(CH_{3})/\omega(CH_{2})$
11 75m	1171m	1162m-s	1167-т	1180m	1183w	1168m	1170w			δ _s (CH ₃)/ω(CH ₂)
1124vs	1118w,(p)	11095	1112w,(p)	1140vs	1132w,p	1124s	1126w	1153vs	1140vw,b,p	ν _s (CF ₃)
1075vs	1044vw	1028s,b				10985	1102w	1130s		Vas(CF3)
				1104vs	1110w	1055s,b		1115s	1105vw,b	Vas(CF3)
				1087s				1092vs	1083w,b	$\nu_{as}(CF_3)$
			1023w			1025s	1028w			ر v(C-C)
		965w				968w	965vw,b			{ µ(CH₃)
790/778m 740m				774m	810vw			789m		p(CH ₃)
	700m,p		697w-m,p	711vw	708m,p	702w	705s,p	716w-m	715m,p	b ₁ (CF ₃)
		679m	•			691m			1	$\rho(CH_2)$
			507vw			500w	512vw		515w	$\delta_{as}(CF_3)$
487s	491s	468m	470m	496ww	505m		480w			Vas(PbC(H))
475sh	472vs,p	445sh	447vs,p	478w	478vs,p	453w	453vs,p	487w	490s,p	v _s (PbC(H))
		242w	242m			240w	245m,p			8(Pb-C-C)
				221m	216m	209m	210m	227m	227m	Vas(PbC(F))
									217m	$\rho(CF_3)$
208m	206s, p	201m	201m,p		207s,p		203vs,p		204vs,p	<pre> ν(PbC(F)) </pre>
	!				185w		175ww		199w	ρ(CF ₃)
	126s				115m,sh					δ(C(H)-Pb-C(H))
	95m		m 06		95m-s		82s		<u>н</u> Б	δ(C(H)-Pb-C(F))
					60w,sh				57m	&(C(F)-Pb-C(F))

Infrarot- und Ramanspektren der Verbindungen (CF₃), PbR₄₋, (R = CH₃, C₂H₅; n = 1-3)^{*a*}

Tabelle 3

^a In cm⁻¹; s = stark, m = mittel, w = schwach, v = sehr, b = breit, sh = Schulter, p = polarisiert.

Fragment	m/e	(CF ₃) ₃ PbMe	$(CF_3)_2 PbMe_2$	CF ₃ PbMe ₃	(CF ₃) ₂ PbEt ₂	CF ₃ PbEt ₃
	Me/Et	(%)	(%)	(%)	(%)	(%)
$\overline{(CF_3)_3Pb^+}$	415	2	_		_	
$(CF_3)_2 PbR^+$	361/375	100	16	-	7	-
CF ₃ PbRF ⁺	311/325	15	10	_	6	-
CF ₃ PbR ₃ ⁺	322/364	-	-	-	-	<1
CF ₃ PbR ₂ ⁺	307/335	-	100	14	48	16
CF ₃ PbR ⁺	292/306	9	5	-	5	-
CF ₃ Pb ⁺	277	47	9	-	18	5
PbR ₂ F ⁺	257/285	-	33	22	25	33
PbR ₃ ⁺	253/295	-	-	57	-	55
PbRF ⁺	242/256	4	6	-	-	_
PbR ₂ ⁺	238/266	-	3	18	-	5
PbF∓	227	49	32	19	-	22
PbRH+	224/238	-	-	-	-	3
PbR ⁺	223/237	55	65	100	100	100
PbH ⁺	209	-	_	_	25	31
Pb ⁺	208	79	67	81	46	43

Massenspektren der Alkyl(trifluormethyl)plumbane $(CF_3)_n PbR_{4-n} (R = CH_3, C_2H_5)^{a}$

 $^{a} m_{\rm Ph} = 208.$

Die ν (CF)-Schwingungen sind in den IR-Spektren dominierend, während sie im Raman-Spektrum als sehr schwache, breite Banden auftreten. Bei den Ethyl-Derivaten fallen ihre energieärmsten Komponenten mit der stark gekoppelten $\nu(CC)/\rho(CH_3)$ -Schwingung bei ca. 1025 cm⁻¹ zusammen, wobei aufgrund ihrer Intensität die IR-Bande der $\nu_{ac}(CF_3)$, die Raman-Linie dagegen der $\nu(CC)$ zugeordnet wird. Für die Methyl- und Ethyl-Reihe unterscheiden sich die CF₃-Streckschwingungen deutlich zum einen in der gemittelten Frequenz (z.B. 1091 für CF₃PbMe₃ gegenüber 1055 cm⁻¹ für CF₃PbEt₃), zum anderen in der Aufspaltung $\nu_s - \nu_{as}$ (CF₃) (49 vs. 81 cm⁻¹). Da eine Schwingungskopplung als Ursache nicht in Frage kommt, muß einerseits auf eine schwächere (und längere) CF-Bindung, andererseits auf eine leichte Geometrieänderung mit einem kleineren FCF-Winkel für die Ethyl-Derivate (Änderung des G-Matrix-Elementes g_{rr}) geschlossen werden. Generell bewirkt die CF₃-Substitution eine Stärkung der benachbarten Bindungen; so steigt die mittlere Frequenz der Pb-CH₃-Streckschwingung im Bereich von 480 cm⁻¹ vom Pb(CH₃)₄ zum (CF₃)₃PbCH₃ ebenso wie die ν (Pb-CF₃)-Frequenz bei 200-230 cm⁻¹ leicht an. Im gleichen Sinn werden auch die Schwingungen der Alkyl-Gruppe, z.B. die charakteristischen δ_{s} (CH₃)-Komponenten der Methyl-Reihe ($\doteq \omega$ (CH₂) in der Ethyl-Reihe), beeinflußt.

Massenspektren

Die Massenspektren der Alkyl(trifluormethyl)plumbane zeigen charakteristische Zerfallsmuster, die sich aus den relativen Häufigkeiten der vier natürlichen Bleiisotope (204 Pb 1.5%; 206 Pb 24.1%; 207 Pb 22.1%; 208 Pb 52.4%) ergeben. In Tabelle 4 sind die Intensitäten der bleihaltigen Fragmente aufgeführt. Bevorzugter Zerfallskanal ist die Abspaltung einer CF₃-Gruppe aus dem nicht oder mit sehr geringer Intensität auftretenden Molekülion, gefolgt von Difluorcarben-Eliminierung. Für die Ethyl-Derivate ist ferner die Abspaltung von Ethylen und das Auftreten von

Tabelle 4

Fig. 1. ²⁰⁷Pb-NMR-Resonanzen der Verbindungen $(CF_3)_n PbR_{4-n}$ (R = CH₃, C₂H₅).

PbH-Fragmenten charakteristisch. Die in Lit. 3 für die Moleküle $(CF_3)_3$ PbMe und $(CF_3)_2$ PbMe₂ berichteten, für CF₃-Derivate untypischen Fragmente des Typs (CF)PbMe_n⁺ wurden nicht beobachtet.

Kernresonanzspektren

Die Präsenz mehrerer Spinn-1/2-Kerne (207 Pb (22.1%), ¹H, ¹⁹F, ¹³C) in den Alkyl(trifluormethyl)plumbanen macht die NMR-Spektroskopie nicht nur zu einer aussagekräftigen Methode zur Charakterisierung der Verbindungen, sondern auch zu einer Sonde für die elektronischen Verhältnisse. Die aufgrund der hohen relativen Empfindlichkeit des ²⁰⁷Pb-Kerns gut zugängliche ²⁰⁷Pb-Resonanz zeigt eine deutliche Hochfeldverschiebung mit zunehmendem CF₃-Substitutionsgrad (Fig. 1), wobei die Unterschiede zwischen Methyl-, und Ethyl-Reihe nur gering sind. Insbesondere für die Methylreihe deutet sich ein parabelähnlicher Verlauf an, wie er auch bei anderen Substituenten und Metallen beobachtet wurde [15]. Die ¹⁹F-Resonanzen zeigen wie die entsprechenden CF₃Ge- [16] oder CF₃Sn-Derivate [11] mit steigendem CF₃-Gehalt eine Hochfrequenzverschiebung von *ca.* 3 ppm/CF₃-Gruppe. Typisch für CF₃-Derivate ist ebenfalls die Hochfrequenzverschiebung mit größer werdendem Raumbedarf der Alkylgruppe [17].

Infolge der Kopplungen zum ²⁰⁷Pb-Isotop sind die in den Tabellen 5 und 6 aufgeführten ¹H-, ¹³C- und ¹⁹F-Signale durch charakteristische Bleisatelliten, die symmetrisch zum Hauptsignal auftreten, gekennzeichnet. Ausgehend vom gut dokumentierten negativen Vorzeichen der ²J(PbH)-Kopplung in Methylplumbanen [15,18] wurden durch selektive Entkopplung der Bleisatelliten der ¹H-Resonanz des CF₃PbMe₃ (Reinsubstanz bzw. in Sulfolan) bzw. des (CF₃)₃PbMe das Vorzeichen der ¹J(PbC_F)-Kopplung ermittelt: So wird durch Einstrahlung in den Hochfeld-²⁰⁷Pb-Satelliten des C¹H₃-Signals des CF₃PbMe₃ selektiv der Hochfeldsatellit des ¹³CF₃-Signals (³J(C_FH) ≈ 2 Hz), im Fall des (CF₃)₃PbMe unter analo-

	δ(¹⁹ F)	δ(¹³ C)	δ(²⁰⁷ Pb)	¹ <i>J</i> (PbC _F) ^c	² J(РbF) ^с	¹ J(CF)	³ J(CF)	⁴ J(FF) ^d
CF ₃ PbMe ₃	- 43.9	133.5 ^f	+ 43.3	- 35	+ 245	383.3	_	_
$(CF_3)_2 PbMe_2$	- 40.6	143.8 ^g	- 55.8	+ 194	(+)377	380.6	5.7	4.0
(CF ₃) ₃ PbMe	- 35.6	151.1 [/]	- 249.6	+ 609	+ 581	381.0	7.6	4.3
CF ₃ PbMe ₂ Cl	- 43.3	152.6 ^b	e	e	(+)438	391.5 ^b	-	-
CF ₃ PbMe ₂ Br	-43.8	147.5	+60.3	(+)126	(+)426	386.0	-	-
CF ₃ PbMe ₂ I	-43.2	138.2	- 100.9	(+)91	(+)391	387.0	-	-
(CF ₃) ₂ PbMeCl	- 38.1	е	е	е	(+)758	е	е	e
$(CF_3)_2$ PbMeBr	- 37.9	150.8	- 140.8	(+)805	(+)724	388.1	11.1	5.3
(CF ₃) ₂ PbMeI	- 39.7	е	е	е	(+)677	e	е	e
CF ₃ PbEt ₃	- 38.5	139.0	+ 50.1	- 344	(+)119	386.1	-	-
$(CF_3)_2$ PbEt ₂	- 36.2	148.6 ⁱ	- 76.8	- 180	(+)230	383.2	4.6	3.5
(CF ₃) ₃ PbEt	- 33.9	155.3 *	-267.2	+ 323	(+)474	383.7	e	4.0
CF ₃ PbEt ₂ Br	- 39.1	е	+217.8	e	(+)223	390.1	-	-
CF ₃ PbEt ₂ I	- 39.4	144.6	e	(-)393	(+)206	389.9	-	_
$(CF_3)_2$ PbEtBr	- 36.0	e	- 59.4	e	(+)568	389.2	e	e

NMR-Daten des (CF₃), Pb-Fragments der Alkyl(trifluormethyl)plumbane ^a

^{*a*} In CDCl₃ bzw. als Reinsubstanz (C₆D₆ ext. Lock); Chem. Verschiebung in ppm; Kopplungen in Hz; ¹H vs. TMS (CHCl₃ 7.27 ppm); ¹³C vs. TMS (CDCl₃ 77.0 ppm); ¹⁹F vs ext. CFCl₃; ²⁰⁷Pb vs. ext. PbMe₄. ^{*b*} In DMSO-*d*₆. ^{*c*} Vorzeichen in () durch Korrelation (Fig. 4/5) bestimmt, s. Text. ^{*d*} Aus ¹³C-Satelliten der ¹⁹F-Resonanz. ^{*c*} Nicht beobachtet. ^{*f*} |³*J*(C_FH)| 2.1 Hz. ^{*s*} |³*J*(C_FH)| 1.7 Hz. ^{*h*} |³*J*(C_FH)| 1.1 Hz. ^{*i*} |³*J*(C_FH)| 1.3 Hz, |⁴*J*(C_FH)| ca. 1.5 Hz. ^{*k*} |³*J*(C_FH)| 0.9 Hz, |⁴*J*(C_FH)| 2.4 Hz.

gen Bedingungen dagegen der Tieffeldsatellit entkoppelt (Fig. 2). Relative Vorzeichen von ²J(PbF) und ¹J(PbC_F) wurden durch 2D-¹³C/¹⁹F-Korrelationsspektren bestimmt. Während aufgrund der Korrelationen als sicher gesehen werden kann, daß in allen untersuchten Verbindungen ²J(PbF) > 0 gilt, kann das Vorzeichen der ¹J(PbC)-Kopplung nicht nur mit den Substituenten, sondern auch mit

Tabelle 6

NMR-Daten des Alkyl-Bereiches der Alkyl(trifluormethyl)plumbane ^a

	δ Η(α)	δ Η(β) ^c	²J(РbH)	³ J(PbH)	δ C(α)	δ C(β)	¹ J(PbC _H)	² Ј(РЬС)	³ J(FC)
CF ₃ PbMe ₃	1.10	-	-71.0	-	0.7	_	+ 302.3	-	1.7
$(CF_3)_2 PbMe_2$	1.54	-	- 84.0	-	5.3	-	+ 357.7	-	2.0
(CF ₃) ₃ PbMe	1.95	-	- 100.9	-	9.6	-	+ 384.6	-	2.7
CF ₃ PbMe ₂ Cl	2.05	-	- 83.4	_	21.9 ^b	-	e	-	2.6 ^b
CF ₃ PbMe ₂ Br	2.06	-	- 81.3	-	18.3	-	+ 341.6	-	2.6
CF ₃ PbMe ₂ I	2.17		- 78.2	-	16.3	-	+ 318.5	-	e
(CF ₃) ₂ PbMeCl	2.40	-	- 105.6	-	e	-	e	-	e
(CF ₃) ₂ PbMeBr	2.41	-	- 102.0	-	21.1	-	+ 416.0	-	3.8
CF ₃ PbEt ₃	1.89	1.60	- 44.3	+ 158.7	17.1	13.1	+ 246.7	- 38.2	1.5
(CF ₃) ₂ PbEt ₂	2.44	1.76	- 49.9	+ 213.0	25.2	12.8	+ 310.1	- 56.1	1.7
$(CF_3)_3$ PbEt ^{d,f}	2.94	1.81	- 78.6	+ 298.3	e	e	e	e	e
CF ₃ PbEt ₂ Br ^g	2.79	1.93	- 34.1	+ 243.5	37.1	13.3	+ 260.5	-63.0	2.1
CF ₃ PbEt ₂ I	2.74	1.86	-21.7	+ 240.2	33.5	13.4	+ 257.4	- 59.8	e
(CF ₃) ₂ PbEtBr ^h	3.29	1.85	- 71.7	+ 359.2	41.6	14.5	e	- 90.1	3.5

^{*a*} s. Tabelle 5. ^{*b*} In DMSO- d_6 . ^{*c*} ³*J*(HH) 7.8±0.1 Hz. ^{*d*} Nicht isoliert. ^{*c*} Nicht beobachtet. ^{*f*} ⁵*J*(HF) 1.2 Hz. ^{*s*} ⁵*J*(HF) 0.7 Hz. ^{*h*} ⁵*J*(HF) 1.3 Hz.

Tabelle 5

Fig. 2. Bestimmung des Vorzeichens der ${}^{1}J(PbC_{F})$ -Kopplungskonstanten relativ zur (negativen) ${}^{2}J(PbH)$ -Kopplung für CF₃PbMe₃: Durch Einstrahlung in den Hochfrequenzbleisatelliten der ¹H-Resonanz werden die Hochfrequenzsatelliten (*) des durch die Fluorkopplung zu Quartetts aufgespaltenen ${}^{13}C_{F}$ -Signals selektiv entkoppelt (${}^{3}J(CH)$ 2.1 Hz).

dem Lösungsmittel wechseln. Figur 3 demonstriert den Wechsel der relativen Vorzeichen ${}^{2}J(PbF)/{}^{1}J(PbC)$ für ein Gemisch der Ethyl-Derivate $(CF_{3})_{n}PbEt_{4-n}$ (n = 1-3).

Die Abhängigkeit der Kopplungskonstanten von Substituenten- oder Lösungsmitteleffekten ist ein charakteristisches Merkmal von Organometallverbindungen mit NMR-aktivem Zentralatom und wurde in Methyl-Derivaten für die ²J(MH)und ¹J(MC_H)-Kopplungen (M = 117/119Sn [19,20], ¹⁹⁹Hg [21], ^{203/205}Tl [22], ²⁰⁷Pb [18,23]) beschrieben. Bei trifluormethyl-substituierten Plumbanen besitzen die ²J(PbF)- und ¹J(PbC_F)-Konstanten aufgrund ihrer großen, aus den Tabellen 6 und 7 sowie Fig. 4 ersichtlichen Variationsbreite besondere Aussagekraft. Die ²J(PbF)-Kopplungen der Organyl(trifluormethyl)plumbane liegen im positiven Bereich zwischen 100 und 800 Hz, wobei der Wert von *ca*. 800 Hz für (CF₃)₄Pb [4] durch Einführung elektropositiver Alkylgruppen verringert wird. Für die ¹J(PbC_F)-Kopplung erfolgt dagegen ein Vorzeichenwechsel mit Werten zwischen – 350 und +800 Hz. Geht man von einer Dominanz des Fermi-Kontakt-Terms aus [24], der die *s*-Elektronendichte an den jeweiligen Kernorten berücksichtigt,

Fig. 3. $2D_{-}^{13}C/{}^{19}F$ -Korrelationsspektrum für ein Gemisch der Ethyl-Derivate $(CF_3)_n PbEt_{4-n}$ (n = 1-3). Eine positive Steigung zwischen den jeweiligen durch Pfeile markierten ${}^{207}Pb$ -Satelliten bedeutet gleiches (positives) Vorzeichen von ${}^{2}J(PbF)$ und ${}^{1}J(PbC_F)$.

sollten beide Kopplungskonstanten einen charakteristischen Gang aufweisen. Die in Fig. 4 dargestellte nahezu lineare Korrelation von ${}^{1}J(PbC_{F})$ und ${}^{2}J(PbF)$,

$${}^{1}J(Pb-CF_{3}) = 2.04 \cdot {}^{2}J(Pb-F) - 650; r = 0.97,$$

Tabelle 7

Lösungsmittelabhängigkeit der Kopplungskonstanten ^a des CF₃PbMe₃

Lsg. mittel	² J(PbF)	¹ J(PbC _F)	¹ J(CF)	¹ J(PbC _H)	² J(PbH)
CF ₂ Br ₂ ^b	+ 281.2	+ 45.5	- 381.4	+ 300.1	- 70.1
CDCl ₃ ^b	+ 244.9	- 35.2	- 383.3	+ 298.2	- 70.0
$C_6 D_6^{b}$	+ 240.8	- 44.4	- 383.1	+ 296.6	- 70.0
Reinsubstanz	+ 240.2	- 48.8	- 383.0	+ 303.1	- 71.4
$C_6 D_6$	+ 237.4	- 52.1	- 383.1	+302.3	- 71.0
Diglyme ^b	+ 224.3	-82.0	- 383.5	+ 301.6	-71.2
Sulfolan ^b	+ 154.7	- 199.5	- 385.7	+ 316.1	- 74.4
DMSO-d ₆ ^b	+ 94.7	- 381.3	- 389.1	+ 358.8	- 79.0

^a In Hz. ^b ca. 20% ige, ^c ca. 90% ige Lösung.

Fig. 4. Korrelation zwischen den Kopplungskonstanten ${}^{2}J(PbF)$ und ${}^{1}J(PbC_{F})$ der Trifluormethylplumbane.

weist darauf hin, daß die Kopplungen durch den 6s(Pb)-Charakter in der Pb-CF₃-Bindung gesteuert werden und damit Rückschlüsse auf die Bindungsverhältnisse zulassen [11]: Die elektronegative CF₃-Gruppe nimmt eine Mittelstellung zwischen Halogen, das in der Bindung zum Metall deutlich ionische Bindungsanteile beinhaltet und wenig Metall-s-Charakter beansprucht, und der kovalent, mit hohen s-Anteilen gebundenen Alkyl-Gruppe ein. Bei der Substitution einer Alkyl- durch eine CF3-Gruppe steht allen anderen Bindungen mehr s-Charakter zur Verfügung, so daß ein genereller Anstieg von "J(PbE) resultiert. Die Erhöhung der effektiven Elektronegativität des Metallatoms und damit Kontraktion des s-Orbitals und Erhöhung von $|\Psi(0)|^2$ wirkt zwar in der gleichen Richtung, würde aber nicht den weiteren Anstieg der Kopplung bei Einführung eines Halogens erklären, da UPES- und ESCA-Untersuchungen an $(CF_3)_n$ -GeX_{4-n}-Verbindungen zufolge [25] sich die elektronischen Verhältnisse am Zentralatom bei Substitution von CF₃ gegen Chlor oder Brom kaum ändern. Dagegen kann bei Halogen-Substitution die Pb-CF₃-Bindung mehr s-Charakter übernehmen, so daß abzuschätzen ist, daß die ²J(PbF)-Kopplungen in den Halogenplumbanen (CF₃), PbX_{4-n} den Wert von 1000 Hz deutlich überschreiten werden. Eine entsprechende Korrelation zwischen ${}^{2}J(SnF)$ und ${}^{1}J(SnC)$ mit einer ähnlichen Steigung von 2.1 wurde bei den Stannanen $(CF_3)_n SnX_{4-n}$ (X = Me, Hal) [11] gefunden. Daß bei den homologen Trifluormethylstannanen im wesentlichen der gleiche Spin-Kopplungsmechanismus wirksam ist, wird ferner durch die sehr gute lineare Abhängigkeit zwischen der ²J(PbF)- und der ²J(¹¹⁹SnF)-Kopplung (Fig. 5) dokumentiert. Der Steigungskoeffizient der Ausgleichsgraden

 $|^{2}J(Pb-F)| = 2.12 \cdot |^{2}J(^{119}Sn-F)| - 363; r = 0.994$

Fig. 5. Korrelation zwischen den Kopplungskonstanten ${}^{2}J(PbF)$ und ${}^{2}J(SnF)$ analoger CF₃Pb- und CF₃Sn-Derivate.

bzw. der Faktor $2.12 \cdot |\gamma_{Sn}/\gamma_{Pb}| = 3.78$ für die reduzierten Kopplungen gibt die erhöhte Empfindlichkeit der ²J(PbF)-Konstanten gegenüber den Substituenten wieder und stimmt annähernd mit dem berechneten Verhältnis der *s*-Elektronendichten am Kern (3.4 [26]) überein.

Die ²J(PbH)- und ¹J(PbC_H)-Kopplungen reagieren ebenfalls empfindlich auf CF₃-Substitution: Da die elektronegative CF₃-Gruppe weniger 6s(Pb)-Charakter als die Alkyl-Gruppe beansprucht, ist der beobachtete Trend—Anstieg des Absolutwertes mit dem CF₃-Substitutionsgrad—zu erwarten. Überraschend kleine Werte werden allerdings für die ²J(PbH)-Kopplungen der CF₃PbEt₂X-Verbindungen gefunden. Das negative Vorzeichen der ²J(PbC)-Kopplung der Ethylreihe wurde durch 2D-¹³C/¹H-Korrelation bestimmt.

Die Lösungsmittelabhängigkeit der Kopplungskonstanten läßt sich anhand von Donor-Akzeptor-Wechselwirkungen diskutieren, die durch die Lewis-Acidität des Plumbans bzw. die -Basizität des Donors bestimmt werden [27,28]. In der Reihe der Organylplumbane besitzt PbMe₄ nahezu keine Akzeptoreigenschaften, so daß die ²J(PbH)-Kopplung nahezu unabhängig vom Lösungsmittel ist [29]. Im Gegensatz dazu weisen die trifluormethylsubstituierten Organylplumbane aufgrund ihrer erhöhten Lewis-Acidität eine beträchtliche Variation aller Kopplungskonstanten in verschiedenen Lösungsmitteln auf. Wie Tabelle 7 für das exemplarisch unter-

Fig. 6. Lösungsmittelabhängigkeit der ²J(PbF)- bzw. ¹J(PbC_F)-Kopplungen des CF₃PbMe₃.

suchte CF₃PbMe₃ zeigt, liegen die Werte der Kopplungskonstanten, die dem Strukturelement Pb-CF₃ zuzuordnen sind, in gut koordinierenden Lösungsmitteln deutlich niedriger als in Lösungsmitteln ohne Donorcharakter. Unter Berücksichtigung des durch 2D-Korrelationsspektren abgesicherten Vorzeichenwechsels der ¹J(PbC_F)-Kopplung, ergibt sich eine nahezu lineare Abhängigkeit der ¹J(PbC_F)/²J(PbF)-Konstanten für CF₃PbMe₃ (Fig. 6), die sich auch gut in die in Fig. 4 gezeigte Korrelation einfügt. Der leichte, aber signifikante Anstieg von |¹J(CF)| kann als Maß für die durch Komplexbildung erhöhte Elektronendichte (Polarisierbarkeit) am Zentralatom gewertet werden und dürfte mit einer geringen Geometrieänderung der CF₃-Gruppe (längere CF-Bindung bei kleinerem FCF-Winkel) korrelieren. Die mit der Donorfähigkeit des Liganden ansteigende PbC_Hbzw. PbH-Kopplung bei gleichzeitiger Abnahme der PbC_F- bzw. PbF-Kopplung spricht für einen (dynamischen) pentakoordinierten Komplex mit vorwiegend equatorialer Anordnung (hoher *s*-Charakter) der Alkyl-Gruppen.

Experimentelles

Alle Reaktionen wurden unter Ausschluß von Luft und Feuchtigkeit an einer Hochvakuumapparatur oder in Stickstoffatmosphäre durchgeführt. Die Darstellung der Ausgangsverbindungen $(CF_3)_2$ Hg [9], $(CF_3)_2$ Cd \cdot D [8], $(CF_3)_4$ Ge [10] sowie $(CF_3)_4$ Sn [5,11] erfolgte nach Literaturvorschrift.

NMR-Spektren: Varian EM 390 (¹H: 90.00 MHz, ext. TMS; ¹⁹F: 84.67 MHz, ext. CFCl₃); Bruker AC 250 (¹³C: 62.90 MHz, ext. C₆D₆ bei 128.0 ppm oder CDCl₃ bei 77.0 ppm; ²⁰⁷Pb: 52.33 MHz, ext. PbMe₄; ¹⁹F-Entkopplung bzw. -Pulserzeugung durch Modulation der ¹H-Pulse).

Schwingungsspektren: (a) IR-Spektren: Perkin-Elmer 580 B; im Bereich von 400-4000 cm⁻¹ in 10 cm Gasküvetten mit KBr-Fenstern, als KBr-Preßling oder als Film auf KBr-Platten. Im Bereich zwischen 200-400 cm⁻¹ in 20 cm Gasküvetten mit Polyethylenfenstern oder als Film auf Polyethylenplatten. (b) Raman-Spektren: Cary 82 mit Kr⁺-Laseranregung bei 647.1 nm im Bereich von 40-4000 cm⁻¹ in 4 mm Glasampullen als Flüssigkeit oder Feststoff.

Massenspektren: Varian MAT 311 (70 eV). Elementaranalysen: Perkin-Elmer 240 B. Dampfdruckmessung: MKS Baratron 315 BHS.

Trialkyl(trifluormethyl)plumban CF_3PbR_3 (R = Me, Et)

(a) In einem 250 ml Rundkolben werden bei 70°C unter Rühren zu 25 mmol $(CF_3)_2Cd \cdot D$ in 70 ml Sulfolan portionsweise 50 mmol R_3PbBr zugegeben. Anschließend werden bei 40–50°C alle flüchtigen Bestandteile im Hochvakuum innerhalb von 3 h abgezogen und durch fraktionierte Kondensation aufgetrennt. Als leichtflüchtige Komponenten finden sich in einer auf – 196°C gekühlten Falle $HCF_2Br (\delta^{(19}F) - 69.7 \text{ ppm}, ^2J(HF) 59 \text{ Hz}), \text{HCF}_3 (\delta^{(19}F) - 79.0 \text{ ppm}, ^2J(HF) 79$ Hz), $HCF_2OR (\delta^{(19}F) - 85.0 \text{ ppm}, ^2J(HF) 76 \text{ Hz})$ und $C_2F_4 (\delta^{(19}F) - 132.3 \text{ ppm})$ während in einer auf -65° C gekühlten Falle das gewünschte Produkt in nahezu 100%iger Reinheit als farblose Flüssigkeit aufgefangen wird. Ausbeute: 8.2 g (51%) CF_3PbMe_3 bzw. 10.2 g (56%) CF_3PbEt_3.

(b) Wird die Umsetzung unter analogen Reaktionsbedingungen mit Me₃Pb-(OCOCF₃) in 1,6-Dibromhexan-Lösung durchgeführt, erhält man ein Produktgemisch aus CF₃PbMe₃ und Me₃PbCF₂(OCOCF₃) im äquimolaren Verhältnis. Me₃PbCF₂(OCOCF₃): ¹H: δ (CH₃) 0.97 ppm, ²J(PbH) 70.2 Hz; ¹⁹F: δ (CF₂) – 59.4 ppm, ²J(PbF) 198.2 Hz; δ (CF₃) – 76.3 ppm; ¹³C: δ (CF₂) 130.5 ppm, ¹J(CF) 366.2 Hz; δ (CF₃) 114.1 ppm, ¹J(CF) 285.2 Hz, ⁴J(FF) 1.6 Hz; δ (CO) 154.6 ppm, ²J(CF) 44.0, ³J(CF) 6.9 Hz; ²⁰⁷Pb: δ 31.3 ppm.

CF₃PbEt₃: Anal. Gef.: C, 22.31; H, 4.09. C₇F₃H₁₅Pb ber.: C, 23.14; H 4.16%.

Umsetzung von CF_3PbR_3 mit Halogenen X_2 (X = Cl, Br, I) und SnCl₄

(a) In einem Schlenkkolben werden 34 mmol CF_3PbR_3 mit der äquimolaren Menge Brom bzw. Iod umgesetzt. Die Bromierung erfolgt durch langsames Zutropfen von Brom bei 0°C zu einer Lösung des Plumbans in CHCl₃. Zur Darstellung des Iodids wird CF_3PbR_3 ohne Lösungsmittel bei Raumtemperatur vorgelegt und festes feingemörsertes Iod in kleinen Portionen zugegeben. Nach beendeter Reaktion werden alle flüchtigen Bestandteile abkondensiert. Der Rückstand wird im Hochvakuum bei 40°C sublimiert, wobei CF_3PbR_2Br und CF_3PbR_2I in nahezu quantitativer Ausbeute erhalten werden.

(b) In einer Schraubampulle wird auf 6 mmol CF_3PbR_3 , gelöst in 2 ml $CHCl_3$, die äquimolare Menge Cl_2 kondensiert. Nach Erwärmen auf $-10^{\circ}C$ und nach Abziehen flüchtiger Bestandteile wird ein weißer Feststoff isoliert, der dem ¹H-NMR-Spektrum zufolge aus 75% CF_3PbR_2Cl und 25% R_3PbCl besteht.

(c) Zu 3.2 g (10 mmol) CF₃PbMe₃ in 3 ml CHCl₃ werden bei Raumtemperatur unter Rühren 0.7 g (2.5 mmol) SnCl₄ mittels einer Spritze zudosiert, wobei sich die Reaktionsmischung erwärmt und ein farbloser Festkörper ausfällt. Die ¹⁹F-NMRspektroskopische Untersuchung der Lösung belegt neben CF₃PbMe₂Cl die Bildung von (CF₃)₂PbMe₂ sowie (CF₃)₂SnMe₂ (δ (¹⁹F) -46.7 ppm, ²J(^{119/117}SnF) 339/322 Hz), $(CF_3)_2$ SnMeCl (δ (¹⁹F) – 49.7 ppm, ²J(^{119/117}SnF) 564/536 Hz) und CF₃SnMe₂Cl (δ (¹⁹F) – 50.8 ppm, ²J(^{119/117}SnF) 384/367 Hz). Nach Abkondensieren aller flüchtigen Bestandteile bleiben 2.5 g (70%) CF₃PbMe₂Cl als Feststoff zurück.

 CF_3PbMe_2Br : Anal. Gef.: C, 9.21; H, 1.65. $C_3F_3H_6PbBr$ ber.: C, 9.33; H, 1.57%. MS $(m_{Pb} = 208, m_{Br} = 79)$: m/e 371 $[CF_3PbMeBr]^+$ 5; 317 $[PbMe_2Br]^+$ 100; 307 $[CF_3PbMe_2]^+$ 19; 287 $[PbBr]^+$ 38; 257 $[PbMe_2F]^+$ 6; 227 $[PbF]^+$ 19; 223 $[PbMe]^+$ 46; 208 $[Pb]^+$ 91%. IR (cm^{-1}) : 3043vw, 2938w, 2780vw, 1620w, 1178w, 1171w, 1164m-s, 1102vs, 1058vs, 802m, 703w, 532w, 508w, 468w, 209s. Raman (cm^{-1}) : 2950w, 1185w-m, 1170w, 1110w, 710w, 517w, 469vs, 210m-s, 145m, 125m, 97m. CF_3PbMe_2I : Anal. Gef.: C, 8.21; H, 1.41. $C_3F_3H_6PbI$ ber.: C, 8.32; H, 1.40%. MS: m/e 419 $[CF_3PbMeI]^+$ 3; 365 $[PbMe_2I]^+$ 100; 350 $[PbMeI]^+$ 18; 335 $[PbI]^+$ 100; 307 $[CF_3PbMe_2]^+$ 7; 227 $[PbF]^+$ 15; 223 $[PbMe]^+$ 34; 208 $[Pb]^+$ 78%.

 CF_3PbMe_2Cl : MS m/e 327 [CF₃PbMeCl]⁺ 4; 307 [CF₃PbMe₂]⁺ 43; 273 [PbMe₂Cl]⁺ 58; 258 [PbMeCl]⁺ 19; 257 [PbMe₂F]⁺ 6; 243 [PbCl]⁺ 52; 227 [PbF]⁺ 24; 223 [PbMe]⁺ 62; 208 [Pb]⁺ 100%. IR (cm⁻¹): 2956w, 2928w, 1375w, 1212vw, 1183m, 1176m, 1170m, 1164m, 1103s, 1053s, 804m, 704w, 695w, 528w-m, 457w-m. Raman (cm⁻¹): 2943w, 1360vw, 1245vw, 1180w, 1165w, 1112w, 1100w, 707w, 505w, 458s, 208m, 125m, 103vs, 60m-s.

 CF_3PbEt_2Br : Anal. Gef.: C, 14.34; H, 2.33. $C_5F_3H_{10}PbBr$ ber.: C, 14.50; H, 2.43%. IR (cm⁻¹): 2995w, 2960w-m, 2924w, 2870w-m, 1630w, 1457w-m, 1430w, 1378m, 1288vw, 1226w, 1155s, 1140sh, 1098s, 1048vs, 1028s, 958m, 710m-s, 524m, 479m, 441w. Raman (cm⁻¹): 3020w, 2960m, 2930m, 2880w-m, 2740w, 1460w, 1380w, 1172w-m, 1105w, 1035w, 706w, 480w, 436s, 414w, 262w-m, 204w-m, 140w, 98m, 40s. CF_3PbEt_2I : Anal. Gef.: C, 13.26; H, 2.27. $C_5F_3H_{10}PbI$ ber.: C, 13.02; H, 2.19%.

Dialkylbis(trifluormethyl)plumban, $(CF_3)_2PbR_2$

Analog zur Synthese von CF_3PbR_3 werden 20 mmol CF_3PbR_2Br mit 10 mmol $(CF_3)_2Cd \cdot D$ umgesetzt. Das abkondensierte Produktgemisch $(CF_3PbR_3/(CF_3)_2PbR_2)$ im Verhältnis 1/3) wird mit einer dem CF_3PbR_3 entsprechenden Menge Br_2 versetzt. Die flüchtigen Produkte werden im Hochvakuum vom ausgefallenen CF_3PbR_2Br abgetrennt bzw. fraktioniert kondensiert. Ausbeute: 3.5 g (47%) $(CF_3)_2PbMe_2$ bzw. 4.0 g (50%) $(CF_3)_2PbEt_2$.

Reaktion von $(CF_3)_2 PbR_2$ mit Halogenen X_2 (X = Cl, Br, I)

Die Umsetzung von $(CF_3)_2 PbR_2$ mit der äquimolaren Menge Iod bei 20°C führt erst nach 24 h Reaktionszeit zur Bildung von Spuren $CF_3 I (\delta^{(19}F) - 5.4 \text{ ppm})$ und $CF_3 PbR_2 I$. Für X = Cl sind die Edukte nach 12 h Rühren bei $T = -25^{\circ}C$ abreagiert, wobei der feste Rückstand in allen Fällen aus einem Gemisch aus $CF_3 PbR_2 Cl$ und $(CF_3)_2 PbRCl$ im Verhältnis 2/1 besteht. Zur Darstellung des $(CF_3)_2 PbMeBr$ werden in einem Schlenkkolben 3.8 g (10 mmol) $(CF_3)_2 PbMe_2$ vorgelegt und bei $-25^{\circ}C$ in einem Guß mit 1.6 g (10 mmol) Br₂ versetzt. Nach 72 h bei $-25^{\circ}C$ werden, ohne auf Raumtemperatur erwärmen zu lassen, nicht umgesetzte Edukte und entstandenes Methylbromid abkondensiert. $(CF_3)_2 PbMeBr$ bleibt als farbloser Feststoff zurück und wird zur Reinigung im Hochvakuum bei 40°C sublimiert. Ausbeute: 3.3 g (75%).

(CF₃)₂PbMeBr: Anal. Gef.: C, 8.51; H, 0.77. C₃F₆H₃PbBr ber.: C, 8.19; H, 0.69%.

MS: m/e 371 [CF₃PbMeBr]⁺ 76; 361 [(CF₃)₂PbMe]⁺ 11; 302 [PbMeBr]⁺ 38; 287 [PbBr]⁺ 68; 277 [CF₃Pb]⁺ 10; 227 [PbF]⁺ 33; 223 [PbMe]⁺ 30; 208 [Pb]⁺ 100%.

Die analoge Bromierung des $(CF_3)_2PbEt_2$ verläuft hinsichtlich der Abspaltung von Ethylbromid nicht selektiv. Nach 72 h Reaktionszeit bei T = -25°C entsteht ein Feststoffgemisch aus 60% CF₃PbEt₂Br und 40% (CF₃)₂PbEtBr.

Methyltris(trifluormethyl)plumban, $(CF_3)_3PbMe$

Analog zur Synthese von $(CF_3)_2 PbR_2$ werden 8 mmol $(CF_3)_2 PbMeBr$ mit 4 mmol $(CF_3)_2 Cd \cdot D$ umgesetzt. Das abkondensierte Produktgemisch aus $(CF_3)_2 PbMe_2/(CF_3)_3 PbMe$ im Verhältnis 1/1.5 wird mit einer dem $(CF_3)_2 PbMe_2$ entsprechenden Menge Br₂ versetzt und 5 Tage bei $T = -25^{\circ}C$ gehalten. Nach Abkondensieren vom ausgefallenen Festkörper erhält man 1.0 g (29%) $(CF_3)_3 PbMe$.

Reaktion von $(CF_3)_3$ PbMe mit Halogenen und HI

(a) In einer Schraubampulle werden 0.4 g (1 mmol) $(CF_3)_3$ PbMe und 1 mmol Cl_2 kokondensiert. Während nach 12 h bei $T = -25^{\circ}C$ keine Reaktion feststellbar ist, entfärbt sich die Reaktionsmischung bei Raumtemperatur innerhalb von 2 h unter Bildung eines farblosen Feststoffs, der NMR-spektroskopisch als $(CF_3)_2$ -PbMeCl identifiziert werden konnte. Ausbeute: 0.3 g (80%).

 $(CF_3)_2 PbMeCl$: MS: m/e 361 $[(CF_3)_2 PbMe]^+$ 25; 327 $[CF_3 PbMeCl]^+$ 62; 277 $[CF_3 Pb]^+$ 17; 258 $[PbMeCl]^+$ 33; 243 $[PbCl]^+$ 88; 227 $[PbF]^+$ 32, 223 $[PbMe]^+$ 49; 208 $[Pb]^+$ 100%.

(b) Bei -20° C werden 0.4 g (1 mmol) (CF₃)₃PbMe mit der äquimolaren Menge Br₂ in einem Guß versetzt. Nach 5 Tagen Reaktionszeit konnten lediglich Spuren CF₃Br (δ (¹⁹F) -18.2 ppm) und (CF₃)₂PbMeBr nachgewiesen werden. Dagegen führt die Bestrahlung mit einer Hg-Hochdrucklampe bei unveränderter Temperatur innerhalb weniger Minuten zur vollständigen Entfärbung der Reaktionsmischung. Der entstandene Feststoff zeigt im ¹H- und ¹⁹F-NMR-Spektrum nur die Signale des (CF₃)₂PbMeBr.

(c) In einer Schraubampulle werden auf 0.4 g (1 mmol) $(CF_3)_3$ PbMe 2 mmol HI kondensiert. Beim Auftauen fällt ein hellgelber Feststoff aus, der neben wenig $(CF_3)_2$ PbMeI viel in CHCl₃ unlösliches PbI₂ enthält. Als flüchtige Komponenten werden nicht umgesetztes $(CF_3)_3$ PbMe, CH₃I, CF₃I und HCF₂I (δ (¹⁹F) -67.0 ppm, ²J(HF) 56 Hz) gefunden. Eine Isolierung des $(CF_3)_2$ PbMeI gelang aufgrund schneller und vollständiger Zersetzung nicht.

Reaktionen von PbR_4 mit $(CF_3)_2Hg$, $(CF_3)_4Ge$ und $(CF_3)_4Sn$

In einer unter Hochvakuum abgeschmolzenen 4 mm-Glasampulle werden 0.5 mmol PbR_4 mit 2 mmol $(CF_3)_n E$ umgesetzt. Der Reaktionsverlauf wurde mittels ¹⁹F-NMR-Spektroskopie verfolgt. Eine Auftrennung der jeweiligen Produkte erfolgte nicht.

Dank

Dem Land Nordrhein-Westfalen (Arbeitsgruppe Fluorchemie NRW), der Deutschen Forschungsgemeinschaft sowie dem Fonds der Chemischen Industrie danken wir für die finanzielle Unterstützung.

Literatur

- 1 R. Eujen und R.J. Lagow, J. Chem. Soc., Dalton Trans., (1978) 541.
- 2 H. Lange und D. Naumann, J. Fluorine Chem., 27 (1985) 309.
- 3 M.A. Guerra, R.L. Armstrong, W.I. Bailey und R.J. Lagow, J. Organomet. Chem., 254 (1983) 53.
- 4 T.J. Juhike, J.I. Glanz und R.J. Lagow, Inorg. Chem., 28 (1989) 980.
- 5 L.J. Krause und J.A. Morrison, J. Am. Chem. Soc., 103 (1981) 2995.
- 6 E.K.S. Liu und L.B. Asprey, J. Organomet. Chem., 169 (1979) 249.
- 7 B.L. Dyatkin, B.I. Martynov, I.L. Knunyants, S.R. Sterlin, L.A. Federov und Z.A. Stumbrevichute, Tetrahedron Lett., (1971) 1345.
- 8 H. Lange und D. Naumann, J. Fluorine Chem., 26 (1984) 1.
- 9 R. Eujen, Inorg. Synth., 24 (1986) 52.
- (a) R.J. Lagow, L.L. Gerchman, R. Eujen und J.A. Morrison, J. Fluorine Chem., 10 (1977) 333; (b)
 R.J. Lagow, R. Eujen, L.L. Gerchman und J.A. Morrison, J. Am. Chem. Soc., 100 (1978) 1722.
- 11 R. Eujen und U. Thurmann, J. Organomet. Chem., 433 (1992) 63.
- 12 H.J. Haupt, F. Huber und J. Gmehling, Z. Anorg. Allg. Chem., 390 (1972) 31.
- 13 W.P. Neumann und G. Burkhardt, Liebigs. Ann. Chem., 663 (1963) 11.
- 14 R. Eujen und H. Bürger, Spectrochim. Acta, Part A, 35 (1979) 1135.
- 15 R.K. Harris, J.D. Kennedy und W. McFarlane, in R.K. Harris und B.E. Mann (Hrsg.), NMR and the Periodic Table, Academic Press, London, 1978, S. 309ff.
- 16 R. Eujen und R. Mellies, J. Fluorine Chem., 22 (1983) 263.
- 17 R. Eujen, unveröffentlicht.
- 18 B. Wrackmeyer, J. Magn. Reson., 28 (1990) 56.
- 19 B. Wrackmeyer, J. Organomet. Chem., 166 (1979) 353.
- 20 V.S. Petrosyan, Prog. Nucl. Magn. Reson. Spectrosc., 11 (1977) 115.
- 21 G. Singh, J. Organomet. Chem., 99 (1975) 251.
- 22 G.D. Shier und R.S. Drago, J. Organomet. Chem., 5 (1966) 330.
- 23 M. Aritomi und Y. Kawasaki, J. Organomet. Chem., 90 (1975) 185.
- 24 J.A. Pople und D.P. Santry, Mol. Phys., 8 (1964) 581.
- 25 (a) J.E. Drake, R. Eujen und K. Gorzelska, Inorg. Chem. 21 (1982) 558; (b) J.E. Drake, K. Gorzelska, G.S. White und R. Eujen, J. Electr. Spectrosc. Relat. Phenom., 26 (1982) 1.
- 26 P. Pyykkö und L. Wiesenfeld, Mol. Phys., 43 (1981) 557.
- 27 G.D. Shier und R.S. Drago, J. Organomet. Chem., 6 (1966) 359.
- 28 R.J. Puddephatt und G.H. Thislethwaite, J. Organomet. Chem., 40 (1972) 143.
- 29 H.P. Fritz und K.E. Schwarzhans, Chem. Ber., 97 (1964) 1390.